

Black Belt Test Questions w/Answers:

1.	Sigma r	efers to a roman l	etter that mathematicians use when discussing "average" or "mean"
	[]	True	[X] False
2.	A proce	ss operating at 6	Sigma will only generate 3.4 defects per million opportunities?
	[X]	True	[] False
	In order MAIC	to achieve Six Si	gma, practitioners follow a standard & rigorous methodology known as
4.	Six Sigr	ma originated in th	e 1980's at Motorola?
	[X]	True	[] False
5.	To achie	eve Six Sigma the	DMAIC methodology follows which approach
	[]	Brainstorm poss	ible factors then randomly analyze them to find the significant ones
	[]	Use SME knowle	edge & experience to quickly find solutions
	[X]	Use the transfer	function Y=f(x)
6.	A Six Si	igma process will	only produce this many defects per million opportunities 3.4
7.	Achievir	ng Six Sigma has	nothing to do with meeting customer expectations?
	[]	True	[X] False
8.	Who is	credited as being	the father of Six Sigma?
	[]	Bob Galvin	[] Mikel Harry
	[]	Jack Welch	[X] Bill Smith

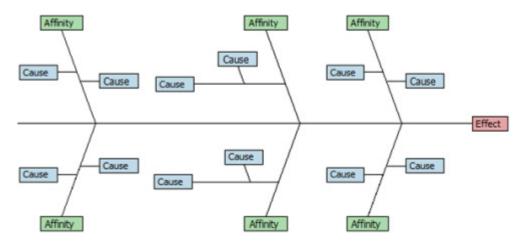
9. Hard co	osis and soil cosis	are two types of COPQ
[X]	True	[] False
10. COPC) is an acronym tha	at stands for what? Cost of Poor Quality
11. Which	of the following is	the one that is not part of the 7 deadly Muda?
[]	Defects	[] Over Production
[]	Inventory	[] Waiting
[]	Movement	[] Conveyance
[]	Over Processing	[X] Measuring
	areto Principle is n True	amed after an Italian economist Vilfredo Pareto
13. CTQ's	are translated from	m VOC
[X]	True	[] False
14. CTQ is	s an acronym that	stands for what? Critical to Quality
15. DPU is	s calculated by div	ding the number of defects by the number of units
[X]	True	[] False
	Sigma Primary and	d Secondary Metrics are Mandatory
17. RTY is	s an acronym that :	stands for what? Rolled Throughput Yield

18. DPU is an acronym that stands for wh	at? Defects per Unit
19. DMPO is an acronym that stands for v	vhat? Defects per Million Opportunites
20. Which of these is not one of the 4 stag	ges of team development?
[] Performing []	Storming
[] Norming []	Forming
[X] Adorning	
21. Which is not a characteristic of a succ	essful team?
[] Common goals and working to	gether to achieve that goal
[] Team member diversity (skills,	knowledge, experience etc.)
[] Appropriate resources are avai	lable
[] Mutual respect	
[] A good leader exists among the	e team
[X] Complacency exists	
<u>-</u>	asure, it's the reason for your project, it's your beacon. This understand in order for you to be successful.
metric is the single most important tiling to	diliderstatid in order for you to be successful.
23. A well written problem statement cont	ains all of the following except
[] Baseline	[] Goal
[] Gap	[]COPQ
[] Timeline Reference	[X] Project Plan
24. From the following, select those that a	re characteristics of a Lean Enterprise
[X] Pull Systems	[X] Flow

[X] Availability

[X] Value Add

[X] Zero Waste


[X] Flexibility

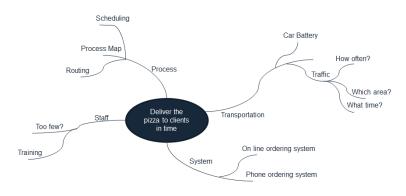
25.	Put these 5S's into the proper	r order of exec	cution	
	[2] Set in Order	[1]] Sort	
	[3] Shine	[5]] Sustain	
	[4] Standardize			
26.	Lean and Six Sigma are Both	focused on Q	Quality & Value for the customer?	
	[X] True []	False		
27.	What is the Japanese word for	or waste? <mark>Mud</mark>	da	
	What type of muda is waste for essary or using resources that	_	nore than required, scheduling more capacity the	an
	[] Inventory	[]	Over-Production	
	[] Motion	[]] Waiting	
	[] Transportation	[X]	Over-Processing	
29.	Defects are flaws, errors or o	ther non-confo	formities that compromise the value of a product	
30.	Lean is only about removing	waste from the	e enterprise?	
	[] True [X]	False		
31.	The 5 Principals of Lean are I	paraphrased b	pelow, select the correct 5	
	[X] Customer Defines Valu	ie	[X] Identify the Value Stream	
	[X] Continuous Flow		[X] Pull Where Possible	
	[X] Manage Toward Perfec	otion	[] Batch Processing	
	[] Work Faster			

- 32. **Over Production** is when more products are produced than are required by the next function or customer.
- 33. What is this?

- [] FMEA [X] C&E Diagram
- [] Process Map [] XY Diagram
- 34. Arrange these C&E process steps into the correct order of execution.
 - [3] Affinitize or group the causes
 - [2] Brainstorm all potentials causes
 - [4] Evaluate
 - [1] Identify & define the effect
- 35. SIPOC is an acronym using which words?
 - [X] Suppliers [] Immediate
 - [X] Inputs [X] Process
 - [X] Outputs [X] Customers
 - [] Primary [] Secondary
- 36. A SIPOC is another name for a flow chart
- [] True [X] False © Copyright Lean Sigma Corporation 2018

37	Δn FMFΔ ranks	notential failures	using values	assigned to severit	v occurrence :	and detection?
υ ι.	All FIVIER TAILING	potentiai iailures	using values	assigned to sevent	y, occurrence a	3110 UELECIIOI1 !

[X] True [] False


38. Which of these tools might you use if you want to develop a Risk Priority Number and ranking for the various types of failures that could occur?

- [] Cause & Effect Diagram [] SIPOC
- [] Functional Process Map [] Thought Process Map
- [] XY Diagram [X] FMEA

39. **SIPOC** should be used when trying to understand the links between customers, process steps and process outputs.

40. Cause & Effect Diagram should be used when brainstorming possible causes to an effect.

41. What is this?

[] FMEA [] C&E Diagram

[] Process Map [] SIPOC

[X] Thought Process Map [] Spaghetti Map

42. Continuous variables are measured, Discrete variables are counted

[X] True [] False

43.	Nominal Data are discre	ete and rank ordered.
	[] True	[X] False
44.	Median is the average of	of a set of data
	_	[X] False
45.	Median is the middle va	lue in a set of data
	[X] True	[] False
46.	Mode is the value in a d	ata set that occurs most frequently
	[X] True	[] False
47. mea		measure that describes how far the data points spread away from the
	[X] True	[] False
48.	For the normal distributi	on, about 68% of the data fall within +/- 1 standard deviation
49. mea		on, about 95% of the data fall within +/- 2 standard deviation from the
50.	A Histogram is a graph	ical tool to present the distribution of the data
51.	The null hypothesis for a	a normality test is that the data are normally distributed?
	[X] True	[] False

52.	Select only those that are exam	oles of graphical analysis tools
	[X] Box Plots	[X] Histograms
	[X] Scatter Plots	[X] Run Charts
	[] ANOVA table	[] Regression Equation
	Measurement Systems Analysis I trustworthy before making any d	is a step in a Six Sigma project that ensures the data are reliable ata-based decisions.
	[X] True [] Fal	se
	•	the same appraiser can obtain the same value multiple times ing the same equipment under the same environment.
	[X] True [] Fal	se
55.	Which are common sources of v	variation in most measurement systems?
	[X] Part to part variation	[X] Measurement instrument
	[X] Repeatability	[X] Reproducibility
	[] Humidity	[] Altitude
	In a Measurement Systems Ana atest?	llysis, which source of variation do we hope to see be the
	[X] Part to part variation	[] Measurement instrument
	[] Measurer (person measu	ring) [] Altitude
	[] Humidity	
57.	Bias is the difference between t	he observed value and the true value of a measurement.
	Reproducibility evaluates whet	ther different appraisers can obtain the same value when

and Reproducibility should be less than 10%

60. If Kappa is greater	than 0.7 the measurement system is acceptable
[X] True	[] False
61. Cp considers the v deviation from the sam	vithin-subgroup standard deviation and Pp considers the total standard ple data.
[X] True	[] False
62. Being stable does to determine whether a	not guarantee a process to be capable. However, being stable is a prerequisite process is capable.
[X] True	[] False
63. Cpk measures the take the process avera	process's potential capability to meet the two-sided specifications. It doesn't ge into consideration.
[] True	[X] False
64. Cp, and Pp take be measuring the process	oth the variation and the average of the process into consideration when capability.
[]True	[X] False
	on 1 suggests ss variation is greater than the width between the USL and LSL ss variation is less than the width between the USL and LSL
	suggests s variation is greater than the width between the USL and LSL ss variation is less than the width between the USL and LSL

59. In a Variable Gage R&R, the acceptable % contribution of variation attributable to Repeatability

67.	7. Which of the following measurements is NOT a process capability index?		
	[]Cp	[] Cpk	
	[X] Kappa	[] Percer	nt Defectives
68.	The Multi-vari chart	is used to visu	alize sources of variation.
69.	Pick which of the foll	owing are basi	c features of the data that a probability distribution describe?
	[X] Shape	[X] Center	-
	[X] Scale	[] Stabili	ty
70.	Which distribution ha	s mean equal	to np and the variance equal to np(1-p)?
	[X] Binomial	[]] Normal
	[] Exponential	. 1] Weibull
	Which continuous prances?	obability distrib	oution is the basis for the analysis of variance or test for equal
	[] Normal Distrib	oution	[X] F Distribution
	[] Student t distr	ibution	[] Chi Square Distribution
72.	Select only continuous	us distributions	from the list below.
	[X] Normal Distrib	ution	[X] F Distribution
	[X] Student T Dist	ribution	[] Binomial Distribution
	[] Poisson Distri	bution	
73.	68-95-99.7 Rule for I	Normal Distribu	ution states that
	• about 68%	of the data sta	ay within σ from the mean.
	• about 95%	of the data sta	ay within 2σ from the mean.
	• about 99.7	'% of the data	stay within 3σ from the mean
	[X] True	[]False	

74. The process of selecting	g a subset of observati	ons within a population is referred to as Sampli	ng.		
		nferences regarding the characteristics of an tics of an observable Sample .			
76. To reduce β risk, we sh	ould increase the Pow	er.			
77. The higher the confider	nce level, the wider the	confidence interval?			
[X] True	[] False				
70. The leaves the equal of	siza tha widow the conf	iden ee intervelO			
78. The larger the sample s		idence intervar?			
[]True	[X] False				
79. A valid sample must be	unbiased and represe	ntative of the population?			
[X] True	[] False				
80. The more variability, the	e tighter the confidence	e interval?			
[] True	[X] False				
81. Which sampling strateg	· -	nples at regular intervals based on a ordered list e order?	:		
[] Simple random s	sampling	[] Stratified sampling			
[X] Systematic samp	oling	[] Cluster sampling			
	82. A Population is grouped into distinct and independent categories and then samples are randomly or systematically selected in each category of the population. Which sampling strategy is this?				
[] Simple random s	sampling	[X] Stratified sampling			
[] Systematic samp	oling	[] Cluster sampling			

	• •		the hypothesis is made based on sample data.
	[X] True	[]False	
	•	less than the α level, w ween different groups.	e reject the null and claim that there is a statistically
85.	α risk is the risk of m	aking a Type I error?	
	[X] True	[] False	
	The proportion of the alue.	e area under the sampli	ng distribution and beyond the test statistic is the
87.	α risk is the risk of be	eing wrong if you fail to	reject the null?
	[] True	[X] False	
88.	In which of the follow	ving conditions can we r	not reject the null hypothesis?
	[] the test statist	tic falls into the critical re	egion
	[] the test statist	tic is greater than the cr	itical value
	[] P-value is sm	aller than alpha level	
	[X] P-value is gre	ater than alpha level	
	• •	is test is used when we about the direction of t	care about whether there is a difference between he difference.
	[] True	[X] False	
90.	Select the two possil	ole conclusions of hypo	thesis testing
	[] Accept the Alt	ternative Hypothesis	[X] Reject the Null Hypothesis
	[X] Fail to Reject	the Null Hypothesis	[] Reject the Alternative Hypothesis

92. One sample t-test is a hypothesis test to study whether there is a statistically significant diffe between a population mean and a specified value. [X] True [] False 93. A 2 Sample-t test is a hypothesis test to study whether there is a statistically significant diffe between the means of two populations 94. Which of these is not an assumption of the ANOVA? [X] The data of k populations are discrete [] The data of k populations are continuous. [] The data of k populations are normally distributed [] The variances of k populations are equal. 95. If the p-value of a t test is 0.6656 and the alpha level is 0.05 then we the null hypothesis and we claim that the means of two groups are [X] fail to reject [] reject [X] equal [] unequal 96. In a Two Sample T-test If tcalc >tcrit, we reject the null and claim there is a statistically signidifference between the means of the two populations. [X] True [] False 97. The One-way ANOVA (one-way analysis of variance) is a statistical method to compare means of two or more populations.	· · · · · · · · · · · · · · · · · · ·	er than the α level, we fail to reject the null and claim that there is no erence between different groups.
between a population mean and a specified value. [X] True [] False 93. A 2 Sample-t test is a hypothesis test to study whether there is a statistically significant diffe between the means of two populations 94. Which of these is not an assumption of the ANOVA? [X] The data of k populations are discrete [] The data of k populations are continuous. [] The data of k populations are normally distributed [] The variances of k populations are equal. 95. If the p-value of a t test is 0.6656 and the alpha level is 0.05 then we the null hypothesis and we claim that the means of two groups are [X] fail to reject [] I reject [X] equal [] unequal 96. In a Two Sample T-test If tcalc >tcrit, we reject the null and claim there is a statistically signidifference between the means of the two populations. [X] True [] False 97. The One-way ANOVA (one-way analysis of variance) is a statistical method to compare meatwo or more populations.	[X] True	[] False
93. A 2 Sample-t test is a hypothesis test to study whether there is a statistically significant diffe between the means of two populations 94. Which of these is not an assumption of the ANOVA? [X] The data of k populations are discrete [] The data of k populations are continuous. [] The data of k populations are normally distributed [] The variances of k populations are equal. 95. If the p-value of a t test is 0.6656 and the alpha level is 0.05 then we the null hypothesis and we claim that the means of two groups are [X] fail to reject [] reject [X] equal [] unequal 96. In a Two Sample T-test If tcalc >tcrit, we reject the null and claim there is a statistically signi difference between the means of the two populations. [X] True [] False 97. The One-way ANOVA (one-way analysis of variance) is a statistical method to compare meatwo or more populations.	· · · · · · · · · · · · · · · · · · ·	
between the means of two populations 94. Which of these is not an assumption of the ANOVA? [X] The data of k populations are discrete [] The data of k populations are continuous. [] The data of k populations are normally distributed [] The variances of k populations are equal. 95. If the p-value of a t test is 0.6656 and the alpha level is 0.05 then we the null hypothesis and we claim that the means of two groups are [X] fail to reject [X] equal [] reject [X] equal [] unequal 96. In a Two Sample T-test If tcalc >tcrit, we reject the null and claim there is a statistically signidifference between the means of the two populations. [X] True [] False 97. The One-way ANOVA (one-way analysis of variance) is a statistical method to compare means two or more populations.	[X] True	[] False
[X] The data of k populations are discrete [] The data of k populations are continuous. [] The data of k populations are normally distributed [] The variances of k populations are equal. 95. If the p-value of a t test is 0.6656 and the alpha level is 0.05 then we the null hypothesis and we claim that the means of two groups are [X] fail to reject		
[] The data of k populations are continuous. [] The data of k populations are normally distributed [] The variances of k populations are equal. 95. If the p-value of a t test is 0.6656 and the alpha level is 0.05 then we the null hypothesis and we claim that the means of two groups are [X] fail to reject	94. Which of these is no	an assumption of the ANOVA?
[] The data of k populations are normally distributed [] The variances of k populations are equal. 95. If the p-value of a t test is 0.6656 and the alpha level is 0.05 then we the null hypothesis and we claim that the means of two groups are [X] fail to reject	[X] The data of k	opulations are discrete
[] The variances of k populations are equal. 95. If the p-value of a t test is 0.6656 and the alpha level is 0.05 then we the null hypothesis and we claim that the means of two groups are [X] fail to reject	[] The data of k	oopulations are continuous.
95. If the p-value of a t test is 0.6656 and the alpha level is 0.05 then we the null hypothesis and we claim that the means of two groups are [X] fail to reject	[] The data of k	oopulations are normally distributed
hypothesis and we claim that the means of two groups are [X] fail to reject	[] The variances	of k populations are equal.
[X] equal [] unequal 96. In a Two Sample T-test If tcalc >tcrit, we reject the null and claim there is a statistically signi difference between the means of the two populations. [X] True [] False 97. The One-way ANOVA (one-way analysis of variance) is a statistical method to compare meatwo or more populations.	=	· · · · · · · · · · · · · · · · · · ·
96. In a Two Sample T-test If tcalc >tcrit, we reject the null and claim there is a statistically signi difference between the means of the two populations. [X] True [] False 97. The One-way ANOVA (one-way analysis of variance) is a statistical method to compare meatwo or more populations.	[X] fail to reject	[] reject
difference between the means of the two populations. [X] True [] False 97. The One-way ANOVA (one-way analysis of variance) is a statistical method to compare means two or more populations.	[X] equal	[] unequal
97. The One-way ANOVA (one-way analysis of variance) is a statistical method to compare meatwo or more populations.		
two or more populations.	[X] True	[] False
[V] True	•	∖ (one-way analysis of variance) is a statistical method to compare means c
[^] True	[X] True	[] False

98. Which of these is not one of the three types of two sample t-tests?		
[] Two Sample T-test unknown variances		
[] Two Sample T-te	est known variances; equal variances	
[] Two Sample T-te	est known variances; un-equal variances	
[X] Two Sample T-te	est known variances; variances greater than 1	
99. ANOVA compares the r	means of different groups by analyzing the averages between and within	
[] True	[X] False	
100. The Mann-Whitney tes	st is a statistical hypothesis test to compare the medians of two populationsed?	
[] True	[X] False	
101. The Kruskal-Wallis to medians among more than	est is a one-way analysis of variance hypothesis test to compare the two groups.	
102. Mood's median is an a	alternative to Kruskal-Wallis?	
[X] True	[] False	
103. Which of these is not a	a true statement?	
[] For the data with	outliers, Mood's median test is more robust than Kruskal-Wallis	
[] Mood's median i	s an alternative to Kruskal-Wallis.	
[] Mood's median t	est is used to compare the medians of two or more populations	
[X] Mood's median to	est is not robust for non-normally distributed populations.	

4. Select all that are accurate statements.		
[X] One sample sign	tests are hypothesis tests comparing medians to a specified value	
[X] the one Sample s	ign test is an alternative test to the parametric one sample t test	
[X] One sample sign	test is a distribution-free test.	
	n the One Sample Sign test and the One Sample Wilcoxon test is that the mes the distribution of the data is symmetric.	
[X] True	[] False	
Chi-square test can be een two discrete factors	used to test whether there is any statistically significant relationship s?	
[X] True	[] False	
107. Correlation analysis helps us to understand the direction and degree of association between variables. It also suggests causation or the cause of the relationship between variables.		
[] True	[X] False	
It is possible that two vicient is low.	ariables have a perfect non-linear relationship when the correlation	
[X] True	[] False	
Correlation implies cau	isation.	
[] True	[X] False	
110. R^2 (also called coefficient of determination) measures the proportion of variability in the data which can be explained by the model.		
[X] True	[] False	
	[X] One sample sign [X] the one Sample sign [X] One sample sign The difference between Sample Wilcoxon assur [X] True Chi-square test can be seen two discrete factors [X] True Correlation analysis here oles. It also suggests of [1] True It is possible that two vicient is low. [X] True Correlation implies cau [1] True R² (also called coefficient of can be explained by the can	

111. R ² ranges from 0 to 1.	The higher R ² is, the better the model can fit the actual data.
[X] True	[] False
112. Residuals are the vert line" created by the regress	ical difference between actual values and the predicted values or the "fitted ion model.
[X] True	[] False
113. Which of these statem	nents is incorrect?
[] Simple Linear Regression	is a statistical technique to fit a straight line through the data points.
[] Simple Linear Regression	models the quantitative relationship between two variables.
[] Simple Linear Regression	describes how one variable changes according to the change of another variable.
[X] Simple Linear Regression	uses at least two predictor variables.
114. The Residual in a reg	ression model is the difference between the actual Y and the fitted Y.
115. The difference between	en Simple Linear Regression and Multiple Linear Regression
•	ession only has one predictor. ession has two or more predictors.
[X] True	[] False
116. Multicollinearity is a si model are correlated with e	tuation where two or more independent variables in a multiple regression ach other?
[X] True	[] False
117. To detect multicollinea called Variance Inflation F	arity and quantify its severity in a regression model we use a measure

118.	Which of these is not a	recommended	d way to deal with multicollinearity?
	[] Increase the sam	ple size	
	[] Collect samples \	vith a broader r	range for some predictors
	[] Remove the varia	able with high m	nulticollinearity and high p-value
	[] Remove variable	s that are includ	ded more than once
	[X] Remove the varia	ble with low mu	ulticollinearity and low p-value
119.	Select three types of va	alid logistic regi	ression models
	[X] Binary	[X] Ordinal	
	[X] Nominal	[] Tertiary	
120.	From the following, sel	ect those that a	are good indicators of a valid multiple regression model
[X] R	square Adj > 0.80		[X] All variables VIF < 5
[X] R	egression model p-valu	e < 0.05	[X] Residuals normally distributed with mean near 0
[X] R	esiduals are independe	nt	[X] All variables p-value < 0.05
good			ned 3 variables that were significant and the model looks 3 variables, the one with the highest coefficient has the
	The following assumpt ssion model:	ions should be	met to ensure the reliability of any simple or multiple linear
•	The errors are normal The errors are independent of the errors have a control of the underlying population.	endent. nstant variance	
	[X] True	[] False	
	Residuals are the verti		petween actual values and the predicted values or the "fitted
	[X] True	[] False	

	True or False, An exp ious result?	eriment is a scientific exercise to gather data to test a hypothesis, theory or
	[X] True	[] False
	True or False, Experirected actively and purpo	nents are planned studies in that they are prepared such that data is sefully?
	[X] True	[] False
	-	nent factors should have largely been determined through with the tools out the DMAIC process?
	[X] True	[] False
	True or False, a properment combinations "tes	rly planned and run DOE will create waste and defective products because t" boundaries.
	[X] True	[] False
128.	Why use experiments	?
	[X] Solve Problems	[X] Prove a Hypothesis
	[X] Optimize Perform	nance [] Random Trouble-Shooting
129.	OFAT is a traditional f	orm of planned experimentation and learning, what does OFAT stands for?
One	Factor at a Time	
130.	Factor levels are the s	elected settings of a factor we are testing in the experiment
	[X] True	[] False
131.	The most popular DO	E is a two-level design meaning there are only two levels for each factor
	[X] True	[] False

132.	2. A treatment is a combination of different factors at different level settings		
	[X] True	[] False	
	An interaction effect is s of one factor	the average change in the response variable resulting from changes in the	
	[]True	[X] False	
	Interaction effect is the action of multiple factors	e average change in the response resulting from the change in the	
	[X] True	[] False	
indic		interactions in your DOE has a p-value larger than alpha level (0.05), it factor or interaction does not have statistically significant impact on the	
	[X] True	[] False	
136. there		with 3 factors and two levels, how many treatment combinations should	
	[] 3^2 = 9 treatmen	ts [X] 2^3 = 8 treatments	
	[] 2x3 = 6 treatmen	ts	
137. be?	In a full factorial DOE	with 3 factors and two levels and one replicate, how many runs will there	
	[] (3^2) x 2 = 18 rui	$[X]$ (2^3) x 2 = 16 runs	
	[] (2 x 3) x 2 = 12 r	uns	
138.	Replicates are the nu	mber of times running an individual treatment is repeated	
139.	Fractional factorials us	e more treatment combinations or runs than full factorials?	
	[]True	[X] False	

140. Fractional factorial exponential exp	periments are intentionally designed with fewer runs or treatment
[X] True	[] False
-	periments are intentionally designed with fewer runs or treatment same number of inputs; this causes confounding or aliasing?
[X] True	[] False
142. When two input factor can easily be separated and	rs are aliases with each other, the effects they each have on the responsed determined?
[] True	[X] False
143. Fractional factorials at available to evaluate higher	re less able to determine effects because of fewer degrees of freedom order interactions?
[X] True	[] False
144. In a 1/2 fraction DOE	with 3 factors and two levels, how many experimental runs will there be?
[] 3^2/2 = 4.5 runs	[X] 2^3/2 = 4 runs
[] 2x3/2 = 3 runs	
145. In a 1/4 fraction DOE	with 8 factors and two levels, how many experimental runs will there be?
[] 256	[] 128
[X] 64	
146. Resolution is the qua	antification or degree of confounding
147. 5S is systematic meth that way?	nod to organize, order, clean, and standardize a workplaceand keep it
[X] True	[] False

148.	Kanban system is a de	emand driven system
	[X] True	[] False
		tive type of Poka Yoke is when your car makes an audible "ding" or alarm ot buckled their seat belt?
	[X] True	[] False
	An example of a preve closed?	entive type of Poka Yoke is when your dishwasher will not start without the
	[X] True	[] False
151.	The term "poka-yoke"	in Japanese means "signboard" [<mark>X</mark>] False
	•	"pull" production scheduling system to determine when to produce, what produce based on the demand
153.	This word in Japanese	e means "signboard" <mark>Kanban</mark>
154.	Which if these is not a	benefit of a Kanban system
	[] Minimizes in-pro	cess inventory
	[] Prevents overpro	oduction
	[] Improves respon	siveness to dynamic demand
	[X] Increases depend	dency on accurate demand forecasts
	[] Streamlines the p	
	[] Visualizes the wo	ork flow

155.	From the following, se	lect those that a	are characteristics of a Lean Enterprise
	[X] Pull Systems		[X] Flow
	[X] Zero Waste		[X] Value Add
	[] High Levels of In	ventory	[] Several Quality Control Teams
		, ,	statistical method to monitor the performance of a process ocess in statistical control?
	[X] True	[] False	
	Statistical process con		d to distinguish between the special cause variation and the
	[X] True	[] False	
158.	It is impossible to elimi	inate the specia [<mark>X</mark>] False	al cause variation from a process?
159.	Statistical process con	trol can be use	d in different phases of six sigma projects
	[X] True	[] False	
160	This control short plates	a individual pair	nts on one graph and moving range points on another graph
100.	·	•	its on one graph and moving range points on another graph
	[X] I-MR	[] Xbar-R	
	[] Xbar-S	[]EWMA	
161.	I chart is valid only if M	IR chart is in co	ontrol
	[X] True	[] False	

	162. Xbar-R chart is a control chart for continuous data with a constant subgroup size between two and ten		
	[X] True	[] False	
163.	U chart is a control cha	rt monitoring the percentages of defectives	
	[]True	[X] False	
164.	P chart is a control cha	rt monitoring the average defects per unit	
	[]True	[X] False	
	Test 1 of the Western Entions from the center lin	Electric rules for SPC is when one point lands more than three standard ne?	
	[X] True	[] False	
166.	NP chart is a control ch	nart monitoring the count of defectives	
	[X] True	[] False	
	167. Return on investment is the ratio of net financial benefits (either gain or loss) on a project or investment to its financial costs		
	[X] True	[] False	
168.	Net present value is the	e total present value of cash flows calculated using a discount rate?	
	[X] True	[] False	
169. time	Control Plans ensure	that the changes introduced by a Six Sigma project are sustained over	
170. Standard Operating Procedures are documents that focus on process steps, activities and specific tasks required to complete an operation.			

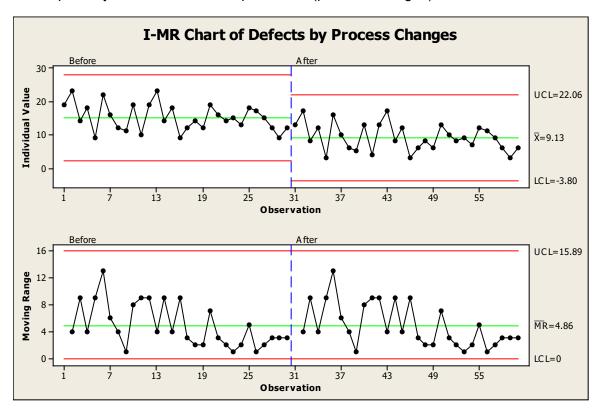
171.	71. Which of these might not be considered a standard element of a control plan?		
	[] SOP (Standard 0	Operating Procedure	es) [] Communication Plan
	[] Training Plan		[] Audit Plan
	[X] Floor plan		
	Control plans typically rmance?	include measureme	ent systems that monitor and help manage key process
	[X] True	[] False	
	Communication Plans ormation?	are documents that	focus on planning and preparing for the dissemination
	[X] True	[]False	
174.	A response plan shoul	d be a component o	of as few control plan elements as possible
	[] True	[<mark>X</mark>] False	
	Which of the following erformed as expected?	-	sure actions, processes, procedures and other tasks
	[X] Audit	[<mark>X</mark>] Training	g
	[X] SOP's	[X] Commu	unication
	[X] Measurements	[X] Poka-Y	oke

Situational Question

The division you support has been producing units of a special product at one of its troubled facilities. Recently senior management has announced layoffs that have impacted operations so severely that immediate changes in processes are the only way the business can continue producing units. Your peers and supervisors have acted quickly to make the necessary changes and redesign the production & supply chain process to accommodate fewer employees. You have been pulled in to take on the responsibility of monitoring the quality of the units being produced to ensure that the process changes have not adversely affected quality. Fortunately, you were anticipating this management action and you began collecting defect data 30 days ago.

A month has now passed since the process changes have been in effect. Below is the data you have been able to collect over the past 60 days. The first 30 data points were proactively collected by you prior to the layoff and the second 30 points are post layoff. Because you diligently studied your Six Sigma training materials, you were also savvy enough to make sure that all data points were randomly drawn from equal subgroup sizes that were properly stratified across shifts and other known production variations so you're confident in the data.

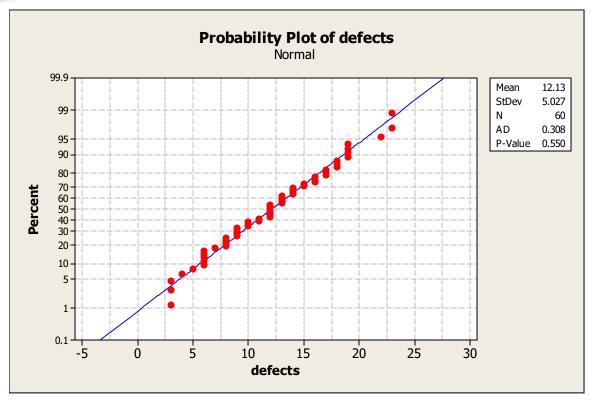
Your supervisors are now requesting an assessment of the quality data and have asked you to conduct the analysis and present it in the production review scheduled for this week. In preparation, use the data below to perform your analysis and answer the following questions:


Defects	Process Change
19	Before
23	Before
14	Before
18	Before
9	Before
22	Before
16	Before
12	Before
11	Before
19	Before
10	Before
19	Before
23	Before
14	Before
18	Before
9	Before
12	Before
14	Before
12	Before
19	Before
16	Before
14	Before
15	Before
13	Before
18	Before
17	Before
15	Before
12	Before
9	Before
12	Before
13	After
17	After
8	After
12	After
3	After
16	After
10	After
6	After
5	After
13	After
4	After
13	After
17	After
8	After
12	After
3	After
6	After
8	After
6	After
13	After
10	After
8	After
9	After
7	After
12	After
11	After
9	After
6	After
3	After
6	After

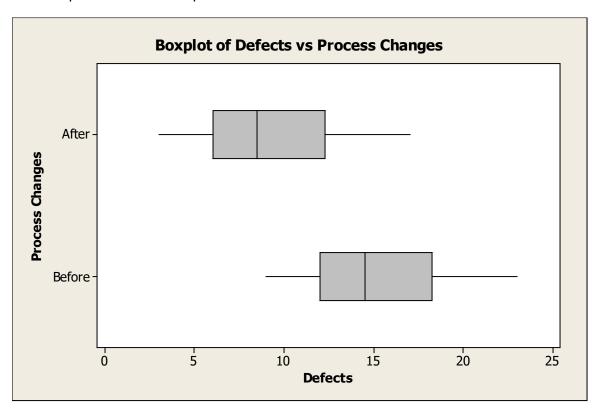
176. True or False, the (before process change	process before the layoff es) was in control?
[X] True	[]False
177. True or False, the (post process change)	process after the layoff is not in control?
[]True	[X] False
•	now of the situation, which charts should you use to bility?
[] CumSum	[]P chart
[]EWMA	[X] IMR chart
179. True or False, the distributed for each par	•
[X] True	[] False
180. True or False, the variances?	e parameters have equal
[X] True	[] False
181. True or False, in process after the layoff	•
[X] True	[]False
	e p-value for a 2-sample t e and after subgroups is
[]True	[X] False

<u>Situational Assessemnt Results & Interpretations:</u>

Given that the defect samples were randomly drawn from stratified subgroups of equal subgroup sizes and that the data were continuous and independent, the simplest and most effective control chart selection for this particular situation should be the IMR chart (one could argue that it should be the C chart but that chart is not in your curriculum). Below is the IMR chart output with control limits separately calculated for each parameter (process changes).



All tests were performed for this chart and there are no indications of out of control conditions. Both charts, the "I" chart (individuals) and "MR" chart (Moving Range) are stable and in control for each parameter. An interesting note however is that the layoff seemed to have improved the defect rate. Let's dig a little deeper and see if that's real...


Before jumping straight into a statistical comparison of the before and after data we need to validate a couple of key assumptions namely, normality and equal variances.

The probability plot below was performed to assess the normality of the data. The null hypothesis for a normality test is the data are normal. Therefore if the data are not normal we would have to reject the null. However, in order to reject the null our p-value should be below 0.05. The p-value for our test result is 0.55 which indicates that we can't reject the null and we must conclude that the data are normal.

Next we perform a test of equal variances.

Although the box plots appear to be from different populations, alone they are not enough to determine if variances are equal. Below is the statistical output for the test of equal variances.

Test and CI for Two Variances: Defects vs Process Changes

```
Method
```

```
Null hypothesis Sigma(After) / Sigma(Before) = 1
Alternative hypothesis Sigma(After) / Sigma(Before) not = 1
Significance level Alpha = 0.05
Statistics
Process
Changes N StDev Variance
After 30 4.049 16.395
Before 30 4.049 16.395
Ratio of standard deviations = 1.000
Ratio of variances = 1.000
95% Confidence Intervals
                              CI for
Distribution CI for StDev Variance
of Data
Normal
              Ratio
                              Ratio
           (0.690, 1.449) (0.476, 2.101)
Continuous (0.693, 1.444) (0.480, 2.085)
```

			Test	
Method	DF1	DF2	Statistic	P-Value
F Test (normal)	29	29	1.00	1.000
Levene's Test (any continuous)	1	58	0.00	1.000

Knowing the data are normal, we should follow the output of the "F Test" to determine if variances are equal. The result is actually a perfect match with the p-value being 1.0. We can safely assume that two data sets have equal variances. Now let's look at the 2-Sample t test:

Two-Sample T-Test and CI: Defects, Process Changes

```
Process
Changes N Mean StDev SE Mean
After 30 9.13 4.05 0.74
Before 30 15.13 4.05 0.74

Difference = mu (After) - mu (Before)
Estimate for difference: -6.00
95% CI for difference: (-8.09, -3.91)
T-Test of difference = 0 (vs not =): T-Value = -5.74 P-Value = 0.000 DF = 58
Both use Pooled StDev = 4.0491
```

With the p-value of 0.000, it's well below the 0.05 thresh hold. We will reject the null which is that there is no difference. A p-value of zero clearly indicates that there is a difference between the means of the Before group and After group. If the p is low the null must go!.